B.Tech. (ME) 3rd Semester (G-Scheme) Examination, November-2023 PHYSICS-II (OPTICS AND WAVES) Paper - BSC-ME-201-G

Time allowed: 3 hours]

[Maximum marks: 75

Note: Attempt five questions in all, selecting one question from each Section. Question No. 1 is compulsory. All questions carry equal marks.

- 1. (a) What are transverse and longitudinal waves? Give two examples of each.
 - (b) Distinguish between interference by division of amplitude and division of wavefront.
 - (c) Explain the following terms with an appropriate diagram:
 - (i) Spontaneous emission
 - (ii) Stimulated emission
 - (d) In Young's double-slit experiment the separation of the slit is 1.9×10^{-3} m and the fringe spacing is 0.31×10^{-3} m at a distance of 1 m from the slits. Calculate the wavelength of light.
 - (e) Define unit plane and nodal plane.

5×3≔15

Section-A

- 2. (a) Define simple harmonic motion and obtain the differential equation for it. Establish the equation of motion for a simple pendulum and derive the expression for the time period and total energy. 10
 - (b) The quality factor of an undamped tuning fork of frequency 256 Hz is 10³, Calculate the time in which its energy is reduced to (1/e) of its energy in the absence of damping. How many oscillations the tuning fork will make in this time?

 5
- 3. (a) Assuming damping to be proportional to velocity, write the differential equation for the damped harmonic oscillator and find its solution. Discuss under damped, over damped and critically damped oscillations.
 - (b) A pendulum made of a light spring of length 10 m has a heavy mass of 2 kg. Assuming the oscillations to be of small displacements, find the period of oscillation.

Section-B

4. (a) Derive the wave equation for the transverse vibrations of a stretched string and show that speed of the transverse wave is given by

$$v = \sqrt{T/\rho}$$

- (b) A wave is represented by
 y(x,t) = [8 cm] sin [(10 rad/s)t (10 rad/cm) x]
 Determine the amplitude, angular frequency, wave number, wavelength and velocity of the wave.
- 5. (a) If a ray is specified by a 2×1 matrix with elements λ_1 and x_1 when it enters an optical system of refractive index n_1 , and is specified by elements λ_1 and x_2 when it leaves the system. The effect of translation is given by

$$\begin{pmatrix} \lambda_2 \\ x_2 \end{pmatrix} = T \begin{pmatrix} \lambda_1 \\ x_1 \end{pmatrix}.$$

Determine the elements of matrix T for translation through a distance D.

(b) Derive the law of refraction using Fermat's principle.

Section-C

- 6. (a) Explain the formation of Newton's rings by reflected light. Derive the expression for the diameter of the nth dark ring.
 - (b) In Newton's ring experiment the diameter of the 5th ring was 0.336×10^{-2} m and that of the 15th ring 0.59×10^{-2} m. Find the radius of curvature of the plano-convex lens if the wavelength of light used is 5890 A°.

- 7. (a) Define dispersive power and resolving power of a plane transmission grating and derive the expression for them.
 - (b) What is the highest order spectrum which may be seen with monochromatic light of the wavelength of 4800 A° by means of transmission grating with 2500 lines per inch?

Section-D

- 8. (a) Discuss Einstein's coefficients and derive the relation between them. Explain why high-frequency lasers are not practically possible. 10
 - (b) Identify and explain the type of pumping source used in the following lasers:
 - (i) Ruby laser
 - (ii) He Ne laser
 - (iii) Nd: YAG laser
 - (iv) Co, laser 5
- 9. (a) Describe the principle, construction and working of He- Ne laser with suitable diagrams. 10
 - (b) Explain the concept of directionality and monochromaticity as applied to the lasers. 5